
What Is Wrong With Representative Agent Equilibrium

Models?

Luca Pezzo, Washington University in St. Louis *

January 15, 2017

Abstract

Representative Agent Equilibrium Models (RAEMs) are standard, still very popular, sim-

plifying yet powerful, theoretical frameworks. They match by simulation a growing number of

empirical moments but their ability to �t actual data is still quite poor. This study provides

a formal setup to analyze what is systematically wrong with these models and how to poten-

tially ameliorate them. Unsurprisingly RAEMs do not work during bad times, characterized

by very high levels of market frictions, medium-high information asymmetry, medium-low

market demand where aggregate expectations are not rational. Perhaps less obviously and

more generally, the probability of RAEMs failures is found counter-clyclical and always quite

high, with market frictions being more problematic during recessions and information asym-

metries during normal times. The main contribution of this paper is to give a novel, uni�ed

and constructive explanation for this �ndings: the tension of RAEMs in matching the un-

conditional risk premium makes them over-estimating the risk premium in bad times (and

potentially under-estimating it in normal times). This is because in bad times investors are

over-optimistic and require a too low compensation for bearing the market risk while in nor-

mal times they are over-pessimistic. Equilibrium models featuring informational ambiguity

can accommodate this new facts.
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1 Introduction

Rational Representative Agent Equilibrium Models (RAEMs) are standard, still very popu-

lar, simplifying yet powerful, theoretical frameworks in the literature. Nonetheless, despite their

ability to match by simulation an increasing number of unconditional empirical moments, their

performances on actual data remain rather poor1 (causing a large fraction of academics to be

concerned), why?

This paper provides a formal setup to analyze what is systematically wrong about these models

and when, suggesting how to potentially ameliorate their performances.

RAEMs in the literature2 feature frictionless, arbitrage-free, exchange economies populated by

a single representative agent who, conditional on the (exogenous) endowment process, holds the

market in equilibrium and forms rational expectations. Unsurprisingly this models do not work

during economic recessions and periods of �nancial turmoil (approximately 25% of the sample).

The study �nds these bad periods to be best characterized by very high levels of market frictions

(above the 75-th percentile), medium-high information asymmetry (above the median), medium-

low market demand (below the median) and irrationally downward-biased aggregate expectations.

Perhaps less obviously and more generally, the probability of RAEMs failures is found counter-

clyclical and always quite high, with market frictions being more problematic during recessions

and information asymmetries during normal times.

The main contribution is to give a novel, uni�ed and constructive explanation of this phenomenon:

the tension of RAEMs in matching the unconditional risk premium makes them over-estimating

the risk premium in bad times (and potentially under-estimating it in normal times). This is

because in bad times investors are over-optimistic and require a too low compensation for bearing

the market risk with respect to the RAEMs' benchmark while in normal times they are over-

pessimistic (and accordingly might require a too high compensation).

1In particular, either unreasonable parameter values are required (e.g. the Mehra-Prescott (1985) equity pre-
mium puzzle) or by using enough instruments one can always reject the given model (e.g. through the GMM J-test,
see for example Hansen-Singleton 1982, Epstein-Zin 1991 and Savov 2011).

2Ever since Lucas (1978), passing through Campbell-Cochrane (1999), Bansal-Yaron (2004), Bansal et al.
(2014), Campbell et al. (2016), Barro (2006) and Wachter (2913) just to mention a few.
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These conclusions are reached via a static analysis, centered around a joint model-free test for the

RAEMs in the literature able to generate an objective rule to identify subsamples within which

the RAEMs are rejected, and extended trough a dynamic analysis constructing the probability of

RAEMs' failure at any given point in time. Underlying both analysis there is a novel restriction

(Martin, 2016), linking the market premium over the next investment period to observables in the

investors' information set (mostly option data), and an econometric model to forecast the market

excess return function of a set of key drivers that proxies for dimensions that go against the main

RAEMs assumptions: namely, market frictions, asymmetric information, arbitrage opportunities

and the impact of money and the foreign markets. Under the RAEMs' framework the novel re-

striction generates a real time lower bound on the market risk premium, while the econometric

model generates the objective rule to select the subsamples that are then assessed in the joint

model-free test. The test assesses if, on average in the selected subsaples, the ex-post realized

excess market return is grater than the ex-ante lower bound implied by the RAEMs and jointly

rejects the models if this is not the case. Over the last 25 years in the U.S. �nancial markets (the

sample for which option data is available) the econometric model selects subsamples containing

the major economic and �nancial recessions jointly rejecting the RAEMs, certifying at the 95%

level that the risk premium in such bad times is below its RAEMs implied lower bound. Regressing

the drivers on the rejection periods documents the predominance of market frictions and asym-

metric information over the other relevant dimensions against the RAEMs. A test for rational

expectations, comparing the periods of rejections (bad times) with the rest of the sample (normal

times), is then constructed systematically detecting over-optimism in bed times (too low required

returns vis-a-vis the rational benchmark) and over-pessimism in normal times (too high required

returns vis-a-vis the rational benchmark).

Important extensions to these results are achieved by a dynamic analysis where the probability of

RAEMs' failures, constructed via the econometric model as the likelihood that the excess market

return at any point in time is below the time t RAEMs' lower bound, is analyzed. In particular,

I am able to (i) disentangle the relative time-varying fragility of the absence of market frictions
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and symmetric information assumptions, (ii) extend the documented insight that RAEMs' perfor-

mances are problematic during recessions to periods where the GDP growth rate is negative and

(iii) further support the claim that rejecting RAMEs in the data is fairly easy. The failure proba-

bilities are right-skewed, counter-cyclical and always quite high: they never go below 33.18% and

have a mean of 46.82%. While the counter-cyclicality and the characteristics of the unconditional

distribution of the failure likelihoods speak to (ii) and (iii) respectively, isolating the conditional

impact of market frictions and asymmetric information on the probability to jointly reject the

RAEMs leads to the conclusion that during bad times the most worrisome issue for RAEMs is the

presence of substantial market frictions (in line with the static analysis) while in normal times is

mostly the presence of asymmetric information.

Another contribution is to �nd a theoretical framework able to accommodate the new �ndings:

equilibrium models featuring informational ambiguity are a promising venue. Abandoning the

price taking assumption and the representative agent construct, thus thinking more in terms of

institutional investors than the representative household, Aliyev and He (2016a) have a setup,

represented in Figure 1

[ Figure 1 goes about here ]

in which the equilibrium market bid-ask spread surface is increasing in the level of aversion to-

ward ambiguity/pessimism, i.e. decreasing in α, as well as in the level of ambiguity/uncertainty,

increasing in δ, resulting in bid-ask spread premium/discount for higher/lower aversion to ambi-

guity and ambiguity itself as opposed to a classical fully rational setup, the horizontal plane. If

we let the investors' attitude toward ambiguity (pessimism vs. optimism) depend on the state

of the economy (bad times vs. normal times) then in bad times, characterized by medium-high

uncertainty (ambiguity), given investors are optimistic, high α, the model can generate a bid-ask

spread (which can still be high in absolute term) lower than the one of a classical rational frame-

work (consistent with a risk premium lower than the one associated to full rationality). While in

normal times, when the level of ambiguity is low and investors are pessimistic, low α, the model

can deliver a bid-ask spread (which can be low in absolute terms) higher than the one from a fully
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rational framework (in line with a higher risk premium). If we want to stick to the representative

agent price taking framework then it seems likely that modifying Aliyev and He (2016b) to include

transaction costs one can show that an optimistic attitude towards ambiguity leads to a discount

in the risk premium relative to the (classical) rational framework while the opposite happens with

a pessimistic attitude.

This paper is not the �rst to document empirical inconsistencies with existing equilibrium mod-

els: the list is long and features Hansen-Singleton (1982)'s or Gallant-Tauchen (1989)'s type of

model-speci�c GMM tests, incompatibility of rational expectations and equilibrium models (e.g.

Greenwood-Schleifer (2014) and Amromin-Sharpe (2014)) and simulation-based critiques which

show how some relevant data features cannot be replicated even in the idealized models' frame-

works (e.g. Martin (2016) and Moreira-Muir (2016)). Di�erently from the GMM literature, the

present paper jointly analyzes an entire class of models. Unlike other studies reporting violations

of the rational expectations in the RAEMs context the proposed rational expectations test is con-

ditional and detect the directions of the biases. Finally, with respect to simulation based critiques

the current analysis employs actual data.

The rest of the paper is structured as follows: Section 2 sets the framework of the study explaining

the logic behind the model free test and detailing the rest of the empirical design, Section 3 de-

scribes the data and motivates the choice of the drivers, Section 4 shows and describes the results

from the static and the dynamic analysis, Section 5 contains some robustness checks and Section

6 concludes. All the proofs, derivations and extra-analysis are in the Appendix (Section 7).

2 Framework

2.1 The logic behind the joint model free test

In a recent paper, Martin (2016) proposes a new asset pricing restriction linking the conditional

risk premium on the market to observables in the marginal investor's information set under weak

assumptions. I exploit this relation to provide a model free test for the pricing equation in the
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context of the RAEMs

1 = E[M ×Ri] (1)

where M is the representative agent equilibrium inter-temporal marginal rate of substitution, Ri

is the gross return on asset i and E[·] is the expectation operator. Each model di�ers in term

of dynamics and functional forms attached to M and Ri, assumes rational expectations, so that

investors' beliefs are in line with the model' predictions, and mainly focuses on the market return

Rmkt.

By the Fundamental Theorem of Asset Pricing (FTAP),3 the existence of the pricing equation (1)

such that M > 0 and an equivalent risk-neutral measure Q such that Rf = EQ[Ri], where Rf is

the risk-free return, is guaranteed by the Law of One Price, under the assumption of no-arbitrage,

the absence of market frictions and by modeling uncertainty through the existence of a potentially

very large but �nite set Ω of states of the worlds. It is than straightforward, in the spirit of Martin

(2016), to derive the following proposition

Proposition 1. In an arbitrage free market where there exists a strictly positive stochastic discount

factor, M , satisfying the pricing equation and the Negative Covariance Condition (NCC)

Covt(Mt+1 ×Rmkt
t+1 , R

mkt
t+1 ) ≤ 0 (2)

it is possible to construct a real time conditional lower bound, LBt ≡
V arQt (Rmkt

t+1 )

Rt,f
, on the market

risk premium Et[Rmkt
t+1 −Rt,f ] by

LBt = 2

(
DYt

Ŝt

)2

 F̂t∫
0

ˆputt(k)dk +

∞∫
F̂t

ˆcallt(k)

 ≥ 0 (3)

by setting DYt = 1 the original Martin (2016) measure is recovered.4

3Ross (1973,1978), Harrison and Kreps (1979), Dybvig-Ross (1987).
4In the Robustness section I show how the two measures are empirically identical.
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Proof. See Appendix

The quantities with hats are ex-dividend, DYt is the gross dividend yield on the market portfolio

with respect to the period [t, t+ 1] assumed known5 at t, Ŝt is the closing market level at time t,

F̂t is the forward contract on the market with tenor 1 = (t+ 1)− t and �nally ˆputt(k) and ˆcallt(k)

are European options on the market with unity tenor and strike k. By the Put-Call parity6 the

forward contract F̂t ≡ F̂t(k
∗) is the unique point (k∗, F̂t(k

∗)) at which the call and put functions

intersect so that LBt is just a function of DYt, Ŝt, { ˆputt(ki), ˆcallt(ki)}ki∈Kt where Kt is the set of

observable strikes with unit tenor at time t.

As the next proposition points out, applying the logic of contraposition to Proposition 1 delivers

a test for the pricing equation.

Proposition 2. Given a violation of the lower bound measure (3) if M > 0 and the Negative

Covariance Condition in (2) holds the pricing equation is rejected.

Because M > 0 and the Negative Covariance Condition in (2) holds for the RAEMs class,7

following Proposition 2 a test for violations of the lower bound measure (3) is a joint model-free

test for the RAEMs. At this point, the only missing element for the formulation of such a test is

an operational de�nition of lower bound violations which is given next:

De�nition 1. Given a time series for the lower bound on the market premium, {LBt}t, at horizon

1 = (t+1)−t, computed through (3), and the associated8 time series for the excess (realized) market

return, {Rt+1 − Rt,f}t, a lower bound violation is a subsample over which the mean of the excess

market return is below that of the lower bound series.

5This assumption is empirically without loss of generality given that it's impact in the data, as shown in the
Robustness section, is absent.

6Adjusted for dividends, i.e. ˆcallt(k) = ˆputt(k) + Ŝt − PV (Dt+1)− k
Rt,f

.
7Including Epstein-Zin (1989) with unity coe�cient of relative risk aversion and arbitrary elasticity of inter-

temporal substitution, Campbell and Cochrane (1999), Bansal and Yaron (2004), Bansal et al. (2014), Campbell
et al. (2016), Barro (2006), Wachter (2013) and Merton (1973) in the Campbell-Viceria (1999) formulation, see
Section III of Martin 2016.

8Lagged one period back so to match the forward looking expectations contained in LBt.
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2.2 Empirical Design

Armed with the model-free logic this section details how to design a framework to analyze

the RAEMs rejections in both a static and a dynamic fashion: statically through the design of

a formal test and dynamically through the derivation of a conditional probability to reject the

RAEMs based on the information available up to time t and the realization πt+1.

The starting point of both analysis is an econometric model to forecast the excess market return

πt+1 ≡ Rmkt
t+1 −Rt,f

πt+1 = ft(D) + et+1 (4)

as a function of a set of key drivers D. The �exible modeling choice of the present study is a

polynomial of degree 2 (a full quadratic speci�cation) able to capture the linear as well as the non-

linear impact of the set of key drivers D with a vector of parameters θt iteratively re-estimated at

each time t in the main sample to pick up the time-varying impact of the drivers.

2.2.1 The RAEMs joint model-free test

De�ne yt+1 ≡ πt+1 − LBt and assume yt+1 to be independent over time. The independence

assumption states that once we subtract the lower bound LBt, computed through (3), from the

excess market return process, πt+1, we are left with noise. Note that we are not restricting such

noise to be identically distributed. Given any process πt+1, the independence assumption can be

justi�ed either by thinking that the lower bound (3) is a good measure for the risk premium,

in which case subtracting a good proxy for the conditional mean of πt+1 from πt+1 just leaves a

random disturbance, or on the contrary by viewing LBt as a bad proxy containing enough noise

to o�set any predictable pattern in πt+1.

We can now formally state the RAEMs joint model-free test

De�nition 2. A joint model free test for the class of representative agent equilibrium models

(RAEMs) is a one-sided t-test

H0 : E[yt+1I
v
t (π̂t+1, LBt)] = 0 vs. H1 : E[yt+1I

v
t (π̂t+1, LBt)] < 0 (5)
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with the nonnegative time t function Ivt (π̂t+1, LBt) ≡ 1[π̂t+1<LBt] capturing joint RAEMs violations

in case of rejection at the 1 − α con�dence level, π̂t+1 representing the time t forecast of πt+1

according to model (4) and yt+1 ≡ πt+1 − LBt being independent over time.

Note that, according to De�nition 1, the lower bound violations can be written as E[yt+1|Ft] < 0

for some �ltration Ft and E[yt+1|Ft] < 0 if and only if E[yt+1It] < 0 for any nonnegative function

It. De�nition 2 sets It ≡ Ivt (π̂t+1, LBt). Also, the i.d. assumption on the process yt+1 guarantees

that yt+1 and I
v
t (π̂t+1, LBt), given information up to time t, are independent so that the test does

not su�er from any kind of sample selection bias.

2.2.2 The conditional probability to reject the RAEMs

The dynamic part of the analysis tackle the issue of when the RAEMs are more problematic

rather then why. Remember that, by the logic of Proposition 2, in the RAEMs class, whenever the

risk-premium Et[πt+1] is below its lower bound LBt we have a violation. Thus a way to capture, at

any given point in time t, the probability of having a lower bound violation and hence a RAEMs

rejection, is trhough the following object Pt(πt+1 < LBt).

In particular, using model (4) I construct the time-series of such conditional probabilities and

further produce the conditional contributions due to speci�c subset of drivers d ⊂ D.

Model (4) produces the forecast π̂t+1 at each time t which can be viewed as

πt+1 = π̂t+1 + εt+1 (6)

thus at each time t retrospectively, the researcher has at disposal the time series {ε̂t+1}tt=1 where

ε̂t+1 ≡ πt+1 − π̂t+1. One can then, according to (6), re-create the conditional distribution of

πt+1 by bootstrapping9 {ε̂t+1}tt=1 and compute Pt(πt+1 < LBt) by subtracting LBt, counting the

number of times {π(s)
t+1−LBt}Sims=1 is negative and dividing it by Sim, the number of bootstrapping

simulations.

Using a similar logic and model (4), the single contribution of subsets of drivers d ⊂ D on the

9Or block-bootstrapping to more precisely take into account potential serial correlation.
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probability to reject the RAEMs, Pt(d : πt+1(d) < LBt) is also computable, this time only10 using

information up to time t. As a matter of facts, model (4) gives us πt+1 as a function of D and

the model parameters given information up to time t, θt. Pt(d : πt+1(d) < LBt) is computed by

looking at the joint empirical frequency of d using the sample {1, .., t} such that at time t for given

θt and d
c ≡ D − d �xed at their time t realizations, πt+1(d) < LBt.

3 Data

The data used in this study is at the monthly frequency and covers the United States Financial

Markets over the period Feb : 1973 − Dec : 2014. The sample is spitted into a training sample

TS = {1, ..., Ts} and a main sample MS = {Ts + 1, ..., T} with Ts = Dec : 1989. Model (4) is

initially estimated in the training sample, thus π̂t+1 with t+1 = Ts+1 uses the parameter vector θt

calibrated exclusively in TS and for each following t ∈MS the parameter vector θt is re-estimated

using information up to time t included. The RAEMs analysis is conducted in MS only and the

choice of Ts is due to the availability of option data, that is, Ts + 1 is the �rst date for which

option quotes are available. The study is conducted from the perspective of an investor taking the

investment decision on whether to invest in the market portfolio or the risk free asset over the next

month given information up to the evening of the �rst business day of the month.11 Consistently,

we de�ne the investment horizon of one month as the period between two consecutive months'

�rst business day evenings. The data is divided into two categories: (i) the Main Variables, the

key variable of interest, namely the market return Rmkt
t+1 , the risk-free return Rt,f and the lower

bound LBt and (ii) the Drivers D. Each category is detailed next.

10I.e. avoiding the usage of realization πt+1.
11For all the ambiguous cases in which it is not clear what is the exact timing of an observation recorded at t

we lag it back one period to make sure it is in the investor information set at speci�ed time t. If anything, this
step only makes it harder to �nd the results of this study.
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3.1 Main Variables

The gross total market return is de�ned as Rt+1 ≡ Ŝt+1

Ŝt
DYt where Ŝ represents the daily

closing level of the Standard & Poor's 500 (SP500) index and DYt ≡ 1+ Dt+1

Ŝt+1
is the gross dividend

yield with {Dt} being the SP500 dividend time series (divided by 12) available on Prof. Shiller

website.12 The gross return on a risk-free investment, Rt,f , is de�ned as the gross yield to maturity

extracted from the Center for Research in Security Prices (CRSP) continuously compounded yield

curve computed over liquid secondary market transactions on U.S. Treasuries.

The time-series of the market premium lower bound, {LBt}, is computed according to equation

(3) in the most conservative way by a cubic spline interpolation13 on the Chicago Board Options

Exchange (CBOE) SPX options closing bid prices; the data from January 1990 trhough December

1995 is provided by Optsum data, while data from January 1996 trough December 2014 is taken

from OptionMetrics. For dates t in which the data is not su�cient/absent to deliver LBt at the

exact maturity of 1 month I linearly interpolate between the contemporaneous t lower bounds

with the two closest maturities.

The following table summarize the main variables

[ Table 2 goes about here ]

3.2 Drivers

The set D of drivers plays an important role in the interpretation of the RAEMs analysis: they

represent the conditioning upon which the equilibrium models fail. As such, they are selected with

the goal of describing dimensions that go against the RAEMs assumptions. In particular, we know

that the �rst order conditions of such models give the pricing equation (1) under the testable14

assumption of no-arbitrage and the absence of market frictions: thus the �rst couple of dimensions

we want to include should contain proxies for arbitrage opportunities and market frictions. We

12http://www.econ.yale.edu/ shiller/data.htm
13In the Robustness section I show how very similar results are obtained if we use a linear interpolation instead.
14As we detailed in Section 2 we also need the Law of One Price and the �niteness of the state space but these

are not testable.
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also know that the class of RAEMs only deals with closed15 exchange economies thus the impact

of money and foreign markets is outside the scope of the models: for this reason the next couple

of dimensions we want to have are those which contains proxies for the value of money and the

impact of foreign markets on the pricing of the domestic assets. A �nal important dimension is

the one concerning the representative agent and its existence, as the proposition below motivates,

an essential (and stringent)16 assumption in this context is the homogeneity of investors' beliefs

Proposition 3. If the following hold

� The set of intervals t the time period [0, T ] can be divided into, the set Ω = {ωt}Tt=0 of states

of the world, and the set of investor types J are �nite

� Investor type j have homogeneous beliefs and standard17 von-Neumann Morgenstern utilities

over the consumption process {cj,t(ωt)}Tt=0

� The Law of One Price hold, the �nancial market is complete, arbitrage-free and features

a �nite number, N + 1, of primitive securities with ex-dividend price processes, STt =

(S0,t, ..., SN,t)

� The space of feasible net trades is linear (markets are frictionless)

Then for any aggregate endowment process the resulting exchange economies have Pareto optimal

competitive equilibria with prices that equivalently sustain a no-trade economy with a single agent,

with Inter-temporal Marginal Rate of Substitution (IMRS)

Mt+1 ≡ β
u′t+1(Ct+1)

u′t(Ct)

holding the market in equilibrium and optimally consuming the aggregate endowments Ct ≡
∑J

j=1 cj,t.

15Or more generically, the impact of foreign markets is not explicitly modeled.
16An entire literature starting form Akerlof (1970), passing through Grossman-Stigliz (1980) studies the e�ect

of asymmetric information.
17Strictly increasing, strictly concave, time-additive and state-independent preferences.
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Proof. See Appendix.

the proposition shows how under the additional requirements of market completeness, vNM pref-

erences and the testable assumption of homogeneity in beliefs we can construct a no-trade economy

with a single agent, the representative agent,18 holding the market portfolio, in the RAEMs frame-

work.

In light of these reasoning and in the sake of parsimony I select the following drivers:

D = {F, SII, TAXchg, ILLIQ,MDI,BM,USDg} (7)

where:

1. F , as a proxy for investors' disagreement19 , is the Ludvigson et al. (2016) �nancial uncer-

tainty measure: computed as the cross-sectional average conditional volatility of the 1-month

Root Mean Squared Error in predictive regressions over approximately 150 monthly �nancial

time series.

2. SII, as a proxy for investors' disagreement20, is the Rapach et al. (2016) short interest

index: computed as the log of the equal-weighted mean of short interest (as a percentage of

share outstanding) across all publicly listed stocks on U.S. exchanges.

3. TAXchg, as a proxy for market frictions, is the annual time series of the rate of change on

total taxes paid on capital gains as reported by the U.S. Department of the Treasury.

4. ILLIQ, as a proxy for market frictions, is the negative of the Pastor-Stambaugh (2003)

18In reality, even if in the modern �nance jargon it is called the representative agent, such single agent is an
ex-post representative agent in that is mainly a device used to explain ex-post a set of observable prices thought to
be in equilibrium. Aggregate consumption in equilibrium is a function of the aggregate wealth and the asset prices,
this implies that if prices changes than also the (aggregate) endowment and thus the agent holding the market in
equilibrium change. Therefore the ex-post representative agent pins-down just a point, the equilibrium one, in the
aggregate demand function. A true ex-ante agent needs to have the extra additional requirement of preferences
that are independent from the aggregate endowment and the prices distributions. Unfortunately such agent can
only be derived under very restrictive assumptions. (See Lewbel (1989))

19In the Appendix it is shown that 80% of the variability of F can be explained using a number of disagreement
proxies only, generating an estimate which correlates 0.9038 with the original series.

20High values of the index indicate that a sizable portion of investors is betting on the market going down by
short-selling stocks. Selling large amounts of stocks is only possible if on the other side of the transactions there
are buyers, i.e. investors who presumably think, for whatever reason, that holding the market is better.
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liquidity index: computed as the (negative of the) aggregate average (over a month) daily

response of signed volume to next day return for all individual stocks on the New York Stock

Exchange and the American Stock Exchange.21

5. MDI, as a proxy for arbitrage opportunities, is the Pasquariello (2014) Market Dislocation

Index: computed as a monthly average of hundreds of individual abnormal absolute viola-

tions of three textbook arbitrage parities in stocks, foreign exchange and money markets.

6. BM , as a proxy for arbitrage opportunities (through miss-pricing), is the book-to-market

ratio taken from Goyal database:22 book-to-market value ratio for the Dow Jones Industrial

Average.

7. USDg, as a joint proxy for the value of money and the impact of foreign �nancial markets23,

is the U.S. Dollar appreciation index: computed as the linear return on the Trade Weighted

U.S. Dollar Index available from the Saint Louis Federal Reserve24

The next table gives the summary statistics of the selected drivers

[ Table 3 goes about here ]

We conclude this subsection by illustrating, through the correlation matrix below, how the parsi-

moniously selected drivers, indeed cover a variety of di�erent information sources

[ Table 4 goes about here ]

The average absolute correlation is 0.1119 with the highest linear association of 0.3743 being the

one between F and ILLIQ followed by the 0.3187 between F and MDI. In the appendix we

21The intuition behind the measure is that if we view liquidity as the ability to trade large quantities without
moving the price and think of signed volume as a proxy for the order �ow then lower liquidity is re�ected in a
greater tendency for order �ow in a given direction on day d to be followed by a price change in the opposite
direction on day d+ 1.

22Available at http://www.hec.unil.ch/agoyal.
23The latter, as reported by Bertaut-Judson (2014) on behalf of the Board of Governors of the Federal Reserve

System, is a consequence of the fact that the U.S. runs a de�cit in the current account since 1985 and the excess of
imports over export has been funded primarily by foreign acquisitions of U.S. securities. See also Walker (2015).

24The index is a weighted (over the volume of bilateral transactions) average of the foreign exchange value of
the U.S. dollar against the currencies of a broad group of major U.S. trading partners.
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show how, despite a level of correlation of 0.3743, F and ILLIQ are fundamentally di�erent in

that only the �rst one can be replicated (almost entirely) by disagreement proxies, while in the

Robustness section we document how using a version of MDI orthogonalized from F gives very

similar results suggesting the di�erence in the F and MDI contents is what is driving the result

in the main speci�cation.

4 Results

This section reports the main �ndings of the paper over the last 25 years in the U.S. �nancial

market and discuss them.

I start providing the speci�cs of the econometric model to predict the excess market return which

is the base for the analysis, then I describe the results from the static analysis centered around the

conditional model free joint test for the RAEMs: in this subsection, once the rejection periods are

identi�ed, they are thoroughly analyzed and used to implement a test for the rational expectations.

Three RAEMs' fragilities are detected as key: the role of market frictions, that of asymmetric

information and the fact that aggregate expectations are not rational. In order to extend some of

the conclusions from the static analysis and further justi�es the relative ease in empirically rejecting

the RAEMs, the next subsection shows the results from the dynamic analysis. The main �ndings

concern the time-varying relative importance of market frictions and asymmetric information as

well as the characteristics of the unconditional distribution of the conditional probabilities to reject

the RAEMs at any point in time in the main sample.

4.1 The econometric model for the excess market return πt+1

As discussed in Section 2 the econometric model for the risk premium (eq. (4)) is the base for

both the static and the dynamic analysis of RAEMs. The chosen speci�cation is

πt+1 = ft(D) + et+1 = gt(D)θt + et+1
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with gt(D) being a full second order polynomial of the drivers d ∈ D, that is, if D = {d1, d2} then

gt(D) = 1 + d1
t + d2

t + d1
t × d2

t and θ
′
t = [θ0

t , θ
1
t , θ

2
t ]
′. In this paper, being D de�ned by 7 drivers, the

vector of parameters contains 36 elements. We use 2 competing estimation methods, OLS and

the Lin-Wu-Zhou (2016) Iterated Combination Method, ICM , which is equivalent to a shrinked

regression (OLS) in which the out-of-diagonal elements in the regressors' matrix are set to zero

and the regressors' coe�cients are divided by the number of regressors, and select the one that

serve our purpose, one step ahead out-of sample forecasting, the best, i.e. the IMC model. The

horse-race results are shown in the following �gure

[ Figure 2 goes about here ]

The blue solid line plots the actual excess return, πt+1, the OLS forecasts, πOLSt+1 , are displayed by

a red dashed line while the dot-dash green line shows the IMC forecasts, πIMC
t+1 : the top panel

illustrates the in-sample forecasts against the actual data in the training sample TS, while the

bottom one the one-step ahead out-of sample estimates in the main sample MS. The models

are compared, both in and out of sample, in terms of their coe�cients and R2 in the following

regression

πt+1 = α + βπMod
t+1 + ut+1 with Mod ∈ {OLS, IMC}

a good model should have α = 0, β = 1 and an high R2. The estimates of these parameters are

reported in the legends: none of the model is spurious25. OLS, as expected,26 performs better

in-sample, while IMC, speci�cally design to deliver superior out-of-sample performances, does a

better job out of sample.

4.2 Static analysis

We now use the selected IMC model to construct the conditional joint model free test for

the RAEMs: basically the model is used to construct an objective rule, Ivt ≡ 1[ ˆπt+1>LBt] with

25The persistence of the βs' 95% upper con�dence intervals are (well) below 1.
26Since over-�tting is an issue in this context.
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ˆπt+1 ≡ πIMC
t+1 , to select the candidate subsample of MS, as a function of the drivers D, over which

to run the joint RAEMs violation test (eq. (5)). The results are shown in Table 5

[ Table 5 goes about here ]

as the �gure in bold shows, the objective rule Ivt have selected a subsample within which, at the

95% con�dence level, the RAEMs in the literature, as per Proposition 2, fail. As a matter of

facts, the conditional risk premium is below its average lower bound (as implied by the RAEMs)

by a solid monthly 1.65%. That is, according to RAEMs' predictions, the risk premium over

this subsample should have been on average at least 0.6%, the same order of magnitude as the

conditional risk free rate, both the former and the latter statistically signi�cant at the 99% level.

What the data says is that the conditional risk premium is below 0.6% at the 95% level instead.

The result is con�rmed by the economic, but statistically insigni�cant values of π|Iv and Rmkt|Iv

of −1% and −0.4%.27 In the Robustness section we show that the result is driven by the dynamics

of the market return rather than those of the lower bound, LBt, or the risk-free return, R
f
t .

Remember that, in order for the above test to be correctly speci�ed and not biased, we need

yt+1 ≡ πt+1 − LBt to be independent. While this assumption cannot be formally tested we can

nonetheless gives supporting evidence: Figure 3 below

[ Figure 3 goes about here ]

shows the correlogram of yt+1 together with the 95% con�dence bands con�rming the absence of

any linear form of dependence, while the other statistics of interest concerning the yt+1 process

are summarized in the next table

[ Table 6 goes about here ]

the statistics, in line with Martin (2016), document the unconditional tightness of the lower bound

measure in that the mean of y, 0.0028, is economically positive not statistically di�erent from 0

27This last two �gure alone do not suggest nor imply a negative risk premium, the variability of the estimates
is just too much so that one can view them as the results of a pure random draw.
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and con�rm the usual estimate for the unconditional risk premium, 0.0061 (0.0732 annualized)28.

So far, through the joint model-free test, we have selected �chunks� of the main sample MS

in correspondence to which the time series of yt+1 is such the RAEMs fail: the risk premium

conditional on the �chucks� is below the average conditional lower bound. The next �gure show

how these chunks and the corresponding values of yt+1 look like

[ Figure 4 goes about here ]

the values of yt+1 in correspondence to the rejection periods highlighted by the function Iv are

displayed via a dashed red line, the yt+1 process is illustrated by the blue solid line and the pink

shaded area pick up the National Bureau of Economic Research (NBER) economic recessions.

Note how the rejection periods contains all the NBER recessions as well as additional times of

�nancial turmoil such as the 1998 Long-Term Capital Management Crises and the Euro sovereign

bond crises in the aftermath of the Great Recession.

Our next task is to analyze such rejection periods more in detail: as we just spotted through

the previous �gure Iv has selected bad economic and �nancial periods. Is there something that

systematically goes wrong in terms of RAEMs assumptions over these periods? In In order to

answer this question I run the following regression

Ivt = β0 +Dtβ + ut (8)

and report the result in the next table

[ Table 7 goes about here ]

note how the �rst three drivers F ,SII and ILLIQ are key: all their coe�cients are signi�cant at

the 1% level, their partial R2 are at least 3 times those of the remaining drivers and, as highlighted

by the last column of the table, running regression (8) only using the �rst three drivers explains

0.4537 of the violation function Iv, which is 90% of the variability explained by using the whole set

28As we will further discuss later, the conditional as well as the unconditional properties of y are consistent
with a high unconditional risk premium, targeted by equilibrium models, mostly driven by a high risk premium in
periods in which RAEMs are not rejected.
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of drivers D. As we show in the Appendix, F , the index of �nancial uncertainty, can be thought as

a proxy for investor disagreement, the same holds true for SII, the index that tracks the aggregate

amount of short selling, while, still in the Appendix, we show the tight link between the illiquidity

measure ILLIQ and the bid-ask spread on the market portfolio. We therefore conclude that the

key drivers explaining the RAEMs rejections are proxies for investors' disagreement (asymmetric

information) and proxies for market frictions (illiquidity and bid-ask spreads) We showed how

F ,SII and ILLIQ are the main responsible for the RAEMs rejections; next we illustrate how

the violation sub-sample de�ned by Iv can indeed be characterized in terms of the main detected

drivers. Consider the following model

dt = α1I
v
t + α2(1− Ivt ) + wt, with dt ∈ {Ft, SIIt, ILLIQt} (9)

model (9) compares the conditional mean of the dependent variable d in the violation periods with

the one computed in the rest of the main sample. Table 8 reports the results of model (9)

[ Table 8 goes about here ]

The key drivers F , SII and ILLIQ are substantially di�erent in periods of RAEMs failures, as

a matter of facts, the di�erence in their means in the violations' periods and non-violation' pe-

riods are statistically signi�cant at the 1%. All drivers have higher values in rejections' periods,

in particular, the disagreement proxies (F and SII) are above their unconditional median while

illiquidity is above its unconditional 75-th percentile. Thus we conclude that rejections' periods

are characterized by substantial investors disagreement and high illiquidity. A similar analysis

conducted in the Appendix 29 also reviles that medium-high bid-ask spreads and medium-low

market demand further describe the rejection periods.

We conclude the static analysis with the results concerning the violation of the rational expecta-

tions assumption, since this is an important point in the interpretation of the results we dedicate

a separate subsection to it.

29in the same subsection that illustrates the link between ILLIQ and the bid-ask spread and in the next one.
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4.2.1 Irrational Expectations

One of the key pillars of the RAEMs is the rational expectations assumption: as brie�y men-

tioned in Section 2.1, this is a consistency requirement on the agents' expectations so that they are

aligned with the models' predictions. In other words, investors' expectations have to be correct, at

least on average and over time (Muth, 1961). Recently Greenwood-Shleifer (2014) and Amromin-

Sharpe (2014) documented how equilibrium-based required returns and investors' expectations

display a counter-intuitive negative correlation casting doubts on the compatibility of rational

equilibrium models and actual data. In this subsection I test whether we can detect systematic

biases in the investors' expectations in the presence of RAEMs rejections and in order to do so I

run the following regression

zt+1 − Et[zt+1] = γ1I
v
t + γ2(1− Ivt ) + ηt+1 (10)

The random variable zt+1 is the quantity over which investors, using information up to time t

included, form expectations Et[zt+1]. Following the logic of model (9), I compare the conditional

mean of the forecast error, zt+1 − Et[zt+1], in the presence of RAEMs rejections, captured by γ1,

and in the rest of the sample, detected by γ2. Note that speci�cation (10), as speci�cation (9)

before, su�ers from the errors-in-variable problem in that the regressor Ivt is itself an estimate.30

Such bias in linear regressions de�ates the real (unobservable) coe�cients γ1 and γ2 towards zero,

so that any signi�cant result we �nd is robust to this problem.31 The next table reports the result

of this analysis

[ Table 9 goes about here ]

I use four di�erent popular �nancial indicators as random variables over which investors form

expectations and three di�erent methods to capture such expectations. In the �rst �ve columns

zt+1 represents the return of the market in excess of the risk-free rate and the expectations are

collected from survey data (Gallup, American Association of Individual Investors, Shiller, Graham

30We are in fact sure at the 95% that it contains RAEMs violations not at the 100%.
31This is the reason why I did not mention the issue while describing model (9).
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and Harley, and Michigan) validated in Greenwood-Shleifer (2014)32. zt+1 in the sixth column

represent in�ation, Infl and the expectations are the market implied (and priced) ones from

the di�erence in the yield of 5-year in�ation indexed treasury bounds and the yield of 5-year

nominal treasury bonds. In the last two columns zt+1 captures a key economic indicator, the

U.S unemployment rate, UR, and a core �nancial indicator, the spread between the BAA rated

corporate bonds and the federal funds rate, SP ; expectations in this case are computed as forecasts

through the speci�cation of an econometric model following the Box-Jenkins (1970) procedure (See

Appendix for the details on the speci�cation procedure).

Under the null of rational expectations γ1 = γ2 = 0, that is, there is no systematic bias in the

time series of forecasted errors zt+1 − Et[zt+1]. In 6 out of 8 cases covering the three di�erent

methodologies implemented for inferring the investors' expectations, γ1 > 0 with a signi�cance

level of 5% for the Gallup market return expectations and the model-based unemployment rate

expectations. The exact same pattern repeats for the case of γ2 < 0, only this time the Gallup

estimate is signi�cant at the 1%. Furthermore, in 4 out of 8 cases covering the survey and

model-based expectations, γ1 6= γ2 at the 5% and 1% level. These results suggest a consistently

irrationally sizable downward bias in the expectations during periods of RAEMs rejections (bad

times) and a consistently irrationally sizable upward bias in the expectations during periods in

which we cannot reject RAEMs (normal times). Note a downward bias means that investors are

over-optimistic: this is immediate to see in the case zt+1 is the unemployment rate and requires bit

more thinking for the other traded quantities. Take the leading examples where zt+1 is the market

risk premium (in�ation and the spread follows an analogous logic); if investors despite being in

bad times require a lower compensation for the market risk, Ei[πt+1|t], it is because they expect

the future conditions not to be as bad, while ex-post it turns out they could have asked for a

higher premium, i.e. πt+1 is systematically higher, an investor forming rational execrations would

have asked for an higher premium, meaning the investors under-estimated the risk embedded in

32Expectations reported by surveys in month t are use at the beginning of month t+ 1 following the convention
explained in Section 3. The rationale behind is to think that the most accurate expectations at the beginning of
month t are those formed over the previous month. Because the time-series of survey expectations are computed
as spreads between the percentage of bullish and bearish investors they are not on the same scale of realized excess
returns, thus I standardized both series in order to make them comparable.
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the prices, hence they have been over-optimistic. Following the same logic, a consistent upward

bias in expectations in normal times implies that investors have been over-pessimistic. Overall

we �nd evidence against the rational expectations, in particular in bad times investors behave

over-optimistically while in normal times they are over-pessimistic.

4.3 Dynamic analysis

The second part of the analysis of the RAEMs failures is dynamic: having certi�ed, at 95%

con�dence, that such models fail and attempted to gather enough evidence as per why we now

turn to the study of when it is more probable that this happens.

Figure 5 plots the conditional probability distribution P̂t(πt+1 < LBt) of rejecting the RAEMs at

each point in time in the main sampleMS against the negative of the GDP growth33 and shows its

empirical distribution. The probability to reject the RAEMs is right-skewed, well approximated

by a lognormal distribution, and always quite high: it has a mean of approximately 47% (median

of 41.08%) and never goes below 33.18%. The time-series is counter-cyclical, having a negative

correlation with respect to the U.S. GDP growth of 0.4817, and very high during the Great

Recession period. Other notable spikes occur in periods of �nancial distress such as the 1998

long term capital management crises or in the sovereign debt crises in the aftermath of the Great

Recession.

Thus, unsurprisingly, models perform worst in periods of high �nancial distress, however more

interestingly, due to the counter-cyclical nature, the pattern generalizes to all periods de�ned by

a negative GDP growth. As a matter of facts, in these periods the average probability to reject

the RAEMs is 48.17%, statistically greater than the analog probability, 45.63%, in periods of

economic expansions. Also, the fact that the probability to reject is always quite high justifying

the documented poor empirical �t.

Next I investigate the contribution of the main drivers d ⊂ D on the conditional probability

to reject the RAEMs. In the Robustness section I show how the ranking found in the static

33The pink areas represent the NBER recessions.
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analysis is the same and the �rst three most important drivers are still the disagreement proxies

F, SII and the illiquidity measure ILLIQ explaining 82.92% of the variability explained by all

drivers. The results are shown in Figure 6: in the upper graph the joint contribution of the

disagreement proxies F, SII, which can be viewed as a new structural index, is plotted in the

form of a dashed red line, the contribution of the illiquiity index ILLIQ, which can also be

regarded as a novel structural proxy, is represented by a dotted green line, while the overall

conditional probability of rejecting the RAEMs is still a solid blue line as in Figure 5. Note how

the new indexes explain all the most notable spikes in the overall rejection probabilities. The

novel structural proxies, even if, as expected34, are highly correlated (with a coe�cient of 0.7160),

carry nonetheless di�erent information as displayed by the bottom graph. The solid light blue line

tracks the di�erence between the disagreement and the illiquidity series; positive values indicate an

higher contribution of structural disagreement while negative values a predominant contribution

of structural illiquidity. The emerging pattern is interesting, the RAEMs are impaired over time

for di�erent reasons: around NBER recessions the probability that models fail is mostly due to the

illiquidity (or market frictions) component, while in normal times is mostly the disagreement (thus

the failure of the symmetry-in-information assumption) part that drives the failures' likelihood.

5 Robustness

Any of the subsection below is independent and can be read on its own.

5.1 Linear versus cubic spline lower bound

In order to compute the lower bound measure at time t, LBt, according to equation (3) we use

the SPX option (Put and Call) bid quotes at horizon 1 month for the di�erent available strikes

as at the end of day t from Optsum and Optionmetrics. In order to compute the integral in (3)

we �rst need to interpolate the functions ˆput(k) and ˆcall(k) over a continuum of strikes. Because

theoretically we know of the convexity of these functions, in the study so far we have used a

34By construction they are both intimately linked to the overall rejection probability time-series.
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cubic-spline interpolation. Another obvious interpolant option is the linear one; Figure 7 shows

the time-series of lower bounds in the main sample MS computed with the linear as well as the

cubic-spline method

[ Figure 7 goes about here ]

the upper graph plots the two time series while the bottom one shows, in percentage, the abso-

lute di�erence in terms of the cubic-spline approximation. The two time-series are overall very

similar, the mean absolute di�erence is 2.4358% with most of the di�erences in the periods pre-

Optionmetrics (i.e until 1996). All the results in the paper are una�ected by the way we compute

the bounds.

5.2 The impact of dividends on the lower bound measure

Martin (2016) derives a lower bound for the risk premium, LBM , which is an implicit function

of the market dividends. In his formulation dividends are assumed known and part of the SP500

index.35 Following this assumption all the contracts on the SP500 are to be considered as if written

on the total value of the index rather than the ex-dividend one, an expedient which simplify the

derivations and it is equivalent to the assumption that there are no dividends at all: as a matter

of fact in my derivation LB ≡ LBM if and only if the gross dividend yield DYt is equal to 1. I

argue that, more realistically, one should account for the fact that such contracts are written on

the ex-dividend level of the SP500 so that dividends (or divided yields), even if assumed known,

should become an explicit input in the lower bound derivation. Empirically whether they are a

function of the dividends or not and whether dividends are indeed to be considered deterministic

or stochastic turns out to be irrelevant in the current analysis. However, the realization of such

a convenient simpli�cation, would have been otherwise impossible to detect if no such formula,

namely equation (3), for the bound as a function of dividend had been derived. I now make the

argument concrete by showing Table 10 which compares the key moments of the lower bound

35This way the stochastic component of S only comes from the ex-dividend level Ŝ.
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empirical distributions under the Martin, LBm
M , and the current, LBm setup for the linear m ≡ l

interpolation as well as the cubic-spline m ≡ cs

[ Table 10 goes about here ]

the four distributions are virtually the same: it is evident how the empirical role of deterministic

dividends be negligible. Nonetheless, the conclusion in the current framework is even more general:

if dividends were stochastic and the correlation between the gross dividend yield and the ex-

dividend market return was zero, ρ ≡ corr(DYt, R̂
mkt
t ) = 0, then V arQ(Rmkt

t+1 ) ≈ V arQ(R̂mkt
t+1 ) so

LBm
M would still be a good overall measure. The overall in-sample correlation is ρ̂ = −0.0515 with

a p-value of 0.2334. I thus conclude that the impact of dividends is empirically irrelevant.

5.3 Joint RAEMs' rejections driven by the market return dynamics

In the Results section I show that the joint model-free test for the RAEMs rejects the models

at the 95% con�dence. In this subsection I re-run the same test except that I �x the risk free

return, Rf
t , and the lower bound, LBt to their unconditional mean; that is, I kill their dynamic

so that any result now directly comes from the market return dynamics. The results are shown in

the next table

[ Table 11 goes about here ]

again, as the bold �gure illustrates, we jointly reject the RAEMs at the 5% level con�rming that

the outcomes of the joint test in the Results section are driven by the dynamics of the market

return rather than those of the risk free return or the lower bound.

5.4 Explaining RAEMs' failures via the rejection probabilities

In section 4.1.1 (Table 6) we show that the key drivers in the rejection of the RAEMs are

the disagreement proxies F and SII as well as the (negative) of the Pastor-Stambaugh (2003)

illiquidity index ILLIQ, a similar conclusion can be reached if instead of explaining the joint
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rejections, captured by the indicator function Ivt (π̂t+1, LBt) ≡ 1[π̂t+1<LBt], we regress the drivers D

on the conditional probabilities to reject the RAEMs according to the model

Pt(πt+1 < LBt) = β0 +Dtβ + ut (11)

the results are reported in the following table

[ Table 12 goes about here ]

note that, according to the partial R2, F, SII and ILLIQ are still the �rst most important

variables capturing 82.82% = 0.6876
0.83022

× 100 of the variation explained by all drivers.

5.5 Drivers: purging the MDI index

When we �rst introduced the drivers D in section 3.2 we showed how the correlation between

MDI and F , 0.3187 as reported in Table 3, is the second highest. In this subsection I argue that

the two variables still carry fundamentally di�erent information. As a matter of fact, I construct

a new MDI variable, MDIO, as the residual from the regression

MDIt = b0 + b1Ft + et (12)

MDIOt is by construction orthogonal to Ft, nonetheless substituting it to the original MDI in the

speci�cation of the drivers' matrix D I still �nd all the results36 detailed in section 4. I conclude

that the di�erence in the F andMDI contents seems to be what is driving the results in the main

speci�cation.

6 Conclusions

To be written. Basically places the paper in a more broader context and suggest further

research.

36Available upon request.
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7 Appendix

7.1 Proof of Proposition 1

First I show why LBt is a lower bound for the market risk premium Et[Rmkt
t+1 − Rt,f ] then I

derive equation (3).

Suppose markets are arbitrage free and there exist a stochastic discount factor M , satisfying the

pricing equation (1) then by the FTAP M > 0 and there exist an equivalent risk-neutral measure

Q such that Rf = E[Ri] for any gross return Ri.

By de�nition the conditional risk neutral variance for the market return at horizon t + 1 can be

written as

V arQt (Rmkt
t+1 ) ≡ EQ

t [Rmkt
t+1

2]− EQ
t [Rmkt

t+1 ]2

where Rmkt
t+1 is the gross cum-dividend market return. Still from FTAP we can go back and forth

from the physical probability measure and the risk-neutral one, thus EQ
t [Rmkt

t+1
2] = Et[Rt,fMt+1R

mkt
t+1

2]

and by the de�nition of risk-neutral measure, EQ
t [Rmkt

t+1 ]2 = Rt,f
2, hence

V arQt (Rmkt
t+1 ) = Et[Rt,fMt+1R

mkt
t+1

2]−R2
t,f

dividing the above equation by the gross risk-free return Rt,f and rearranging

V arQt (Rmkt
t+1 )

Rt,f

= Et[R
mkt
t+1 −Rt,f ] + Covt(Mt+1R

mkt
t+1 , R

mkt
t+1 )

if Covt(Mt+1R
mkt
t+1 , R

mkt
t+1 ) ≤ 0, the NCC, then LBt ≡

V arQt (Rmkt
t+1 )

Rt,f
is a lower bound for RPt ≡

Et[R
mkt
t+1 −Rt,f ].

Next, I derive equation (3). From the de�nition of variance, using hats to denotes ex-dividend
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quantities and letting S be the cum-dividend market level

V arQt (Rmkt
t+1 ) ≡ EQ

t

[(
St+1

St

)2
]
− EQ

t

[
St+1

St

]2

= EQ
t

( Ŝt+1

Ŝt
DYt

)2
−Rt,f

2

=
(DYt)

2Rt,f

(Ŝt)2
EQ
t

[
Ŝ2
t+1

Rt,f

]
−Rt,f

2

by no arbitrage (see Martin 2016), since the options are written on Ŝt

EQ
t

[
Ŝ2
t+1

Rt,f

]
= 2

∫ ∞
0

ˆcallt(k)dK = 2

(∫ F̂t

0

ˆcallt(k)dK +

∫ ∞
F̂t

ˆcallt(k)dK

)

since deep-in-the-money call options are neither liquid in practice nor intuitive to think about, it

is convenient to split the range of integration for EQ
t

[
Ŝ2
t+1

Rt,f

]
into two and use the put-call parity to

replace in-the-money call prices with out- of-the-money put prices. Assume that Market Dividends

are paid as lump sums Dt+1 at the and of the period [t : t+ 1] but before t+ 1, then the following

is true

max(St+1 −Dt+1 − k, 0) = max(k − St+1 +Dt+1, 0) + (St+1 −Dt+1)− k

since Ŝt+1 = St+1 −Dt+1

max(Ŝt+1 − k, 0) = max(k − Ŝt+1, 0) + (St+1 −Dt+1)− k

by linearity of the pricing equation

ˆcallt(k) = ˆputt(k) + Ŝt − PV (Dt+1)− k

Rt,f
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where PV (Dt+1) = EQt
[
Dt+1

Rt,f

]
= (1 −DYt)EQt

[
Ŝt+1

Rt,f

]
= DYt−1

DYt
Ŝt and the last equality comes from

Rt,f = EQt
[
St+1

St

]
. Applying the put-call parity

∫ F̂t

0

ˆcallt(k)dK =

∫ F̂t

0

ˆputt(k)dK + F̂t

(
Ŝt −

DYt − 1

DYt
Ŝt

)
− F̂ 2

t

2Rt,f

=

∫ F̂t

0

ˆputt(k)dK + F̂t

(
Ŝt
DYt

− F̂t
2Rt,f

)

which implies

EQ
t

[
Ŝ2
t+1

Rt,f

]
= 2

[∫ F̂t

0

ˆputt(k)dK + F̂t

(
Ŝt
DYt

− F̂t
2Rt,f

)
+

∫ ∞
F̂t

ˆcallt(k)dK

]

plugging EQ
t

[
Ŝ2
t+1

Rt,f

]
in V arQt (Rt+1) =

(DYt)2Rt,f

(Ŝt)2
EQ
t

[
Ŝ2
t+1

Rt,f

]
−Rt,f

2 delivers equation (3)

LBt = 2
(Qt)

2

(Ŝt)2

(∫ F̂t

0

ˆputt(k)dK + ˆcallt(k)dK

)

7.2 Proof of Proposition 3

Denote homogeneous agents' beliefs as {{pt(ωt)}ωt}Tt=0 with p0(ω0) = p0 = 1. De�ne a Lucas

type economy where each asset pays dividendsDT
t = (D0,t, ..., DN,t) at t. Since the space of feasible

net trades is linear agent j at time t can trade (buy and sell) any asset in any (even in�nitesimal)

quantity αTj,t = (α0
j,t, ..., α

N
j,t). The problem that investor j faces is

max
{{cj,t(ωt),αj,t(ωt)}ωt}t

∑
t

βtj
∑
ωt

pt(ωt)uj,t(cj,t(ωt))

subject to

cj,t(ωt) + αj,t(ωt)
TSt(ωt) ≤ αj,t(ωt)

T (St(ωt) +Dt(ωt)) for every t and ωt

29



where βtj is the subjective time discount factor of agent j and uj,t is strictly incising and strictly

concave. The market is required to clear in the aggregate meaning

Ct(ωt) ≡
∑
j

cj,t(ωt) =
∑
i

Di,t(ωt) for every t and ωt

From the F.O.C. of agent j problem with respect to αj,t

St(ωt) =
∑
ωt+1

βj
u′j,t+1(cj,t+1(ωt+1))

u′j,t(cj,t(ωt))

pt+1(ωt+1)

pt(ωt)
(St+1(ωt+1) +Dt+1(ωt+1))

De�ne for every t, |ωt| ≡ Ωt, then the market payo� matrix that can be reached from time t at

state ωt is characterized by

Yt+1(ωt) =


S0
t+1(1) +D0

t+1(1) · · · S0
t+1(Ωt+1) +D0

t+1(Ωt+1)

...
. . .

...

SNt+1(1) +DN
t+1(1) · · · SNt+1(Ωt+1) +DN

t+1(Ωt+1)


because the market is complete rank(Yt+1(ωt)) = Ωt+1 and N + 1 is large enough such that

N + 1 = Ωt+1. Further de�ne

zjt+1(ωt) =


βj

u′j,t+1(cj,t+1(1))

u′j,t(cj,t(ωt))
pt+1(1)
pt(ωt)

...

βj
u′j,t+1(cj,t+1(Ωt+1))

u′j,t(cj,t(ωt))
pt+1(Ωt+1)
pt(ωt)


thus the F.O.C. can be rewritten as

St(ωt) = Yt+1(ωt)z
j
t+1(ωt)
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and the payo� matrix Yt+1(ωt) is invertible and z
j
t+1(ωt) is uniquely determined. That is for any

agent j and i

βj
u′j,t+1(cj,t+1(ωt+1))

u′j,t(cj,t(ωt))

pt+1(ωt+1)

pt(ωt)
= βi

u′i,t+1(ci,t+1(ωt+1))

u′i,t(ci,t(ωt))

pt+1(ωt+1)

pt(ωt)
≡ pt+1(ωt+1)

pt(ωt)
Mt+1(ωt+1) ≡ mt+1(ωt+1)

note that the state contingent claim that pays 1 unit of consumption in state ωt+1 only can now

be obtained through the asset allocation αt(ωt)
T = (α0

t (ωt), ..., α
N
t (ωt)) such that

(α0
t (ωt), ..., α

N
t (ωt)) = (1, 0, ..., 0)Yt+1(ωt)

−1

thus in a complete market any state contingent claim at any time t is attainable. De�ne φ0(ωt+1)

as the time 0 price of the contingent claim that at t + 1 delivers 1 unit of consumption if state

ωt+1 realizes, then by the Law of One Price

φ0(ωt+1) = price0((α0
t (ωt), ..., α

N
t (ωt)) = (1, 0, ..., 0)Yt+1(ωt)

−1)

the set {{φ0(ωt)}ωt}t contains all the state prices of the economy, where by de�nition φ0(ω0) =

φ0 = 1.

The fact that the market is complete enable to re-state the problem of agent j as follows

max
{{cj,t(ωt)}ωt}t

∑
t

βtj
∑
ωt

pt(ωt)uj,t(cj,t(ωt))

subject to ∑
t

∑
ωt

φ0(ωt)cj,t(ωt) ≤
∑
t

∑
ωt

φ0(ωt)ej,t(ωt)

where ej,t(ωt) is the agent (exogenous) endowment at time t in state ωt. From the F.O.C. of this

problem

φ0(ωt) = βtj
u′j,t(cj,t(ωt))

u′j,0(cj,0)
pt(ωt) for every t and ωt
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where u′j,0(cj,0) = δj and δj is the Lagrange multiplier, note that

φ0(ωt) = mt(ωt)×mt−1(ωt−1)× ...×m1(ω1) for every t and ωt

I next show that the competitive equilibrium allocations {{c1,t}t, ..., {cJ,t}t} are Pareto optimal.

A Pareto optimal allocation is a feasible allocation, that is

∑
j

cj,0 = C0

and ∑
j

cj,t(ωt) = Ct(ωt) for every t and ωt

such that it does not exist any other allocation which is feasible and can strictly increase at least

one individual's utility without decreasing the utilities of the others. From the classical second

welfare theorem (see e.g. Varain (1978)), it is known that corresponding to every Pareto optimal

allocation, there exist a set of non-negative numbers, {λj}j, such that the same allocation can be

achieved by a social planner solving the following problem

max
{{{cj,t(ωt)}ωt}t}j

∑
i

λj
∑
t

βtj
∑
ωt

pt(ωt)uj,t(cj,t(ωt))

subject to ∑
j

cj,0 = C0

and ∑
j

cj,t(ωt) = Ct(ωt) for every t and ωt

where in order to avoid the trivial (and unrealistic) case of Pareto Optima where only some investor

get something I require the Pareto weights to be strictly positive. It is then easy to show that

the F.O.C of this problem are the same of these of last problem provided we set the Lagrange

multipliers of this problem, γt(ωt), equal to the state prices, i.e. γt(ωt) = φ0(ωt) > 0 and we set
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the Pareto weights such that λj = 1
δj

where δj was the j-th Lagrange multiplier in the previous

problem. Thus the competitive equilibrium allocations {{c1,t}t, ..., {cJ,t}t} are Pareto optimal.

The last step of the proof concern the construction of the single agent economy which, given the

stream of endowments
∑

t

∑
ωt
ej,t(ωt) for each agent j, is sustained by the same set {{φ0(ωt)}ωt}t

of state prices that sustains the competitive equilibrium in the multi-agent economies that we have

de�ned in this proof. De�ne

βt =
∑
j

λj∑
j λj

βtj

u0(W0) = max
{wj,0}j

∑
j

λjuj,0(wj,0)

subject to ∑
j

wj,0 = W0

ut(Wt(ωt)) = max
{wj,t(ωt)}j

1

βt

∑
j

λjβ
t
juj,t(wj,t(ωt))pt(ωt)

subject to ∑
j

wj,t(ωt) = Wt(ωt)

note then from the feasibility constraints it follows that

u′0(C0) = J

and

u′t(Ct(ωt)) = J
φ0(ωt)

βt

now consider an agent whose utility function and endowments are
∑

t β
t
∑

ωt
pt(ωt)ut(Ct(ωt)) and

{{Ct(ωt)}ωt}t respectively where Ct(ωt) =
∑

j ej,t(ωt) for every t and ωt so that the market clears.

Then the state prices must be set so that the agent optimal consumption is to hold the aggregate

endowments. Therefore, using the time 0 consumption good as the numeraire, the ratio of state

prices φ0(ωt+1)
φ0(ωt)

must be equal to the single agent's marginal rate of substitution between time t in
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state ωt and time t+ 1 in state ωt+1, a necessary condition which is indeed satis�ed

Mt+1(ωt+1) ≡ β
u′t+1(Ct+1(ωt+1))

u′t(Ct(ωt))

pt+1(ωt+1)

pt(ωt)
=
φ0(ωt+1)

φ0(ωt)

It is straightforward to show that the set {{φ0(ωt)}ωt}t of state prices are indeeed equilibrium

prices in the economy of the single agent. As a matter of fact the agent solves

max
{{Ct(ωt)}ωt}t

∑
t

βt
∑
ωt

pt(ωt)ut(Ct(ωt))

subject to ∑
t

∑
ωt

φ0(ωt)Cj,t(ωt) =
∑
t

∑
ωt

φ0(ωt)(
∑
j

ej,t(ωt))

from the F.O.C

φ0(ωt+1) = βt+1u
′
t+1(Ct+1(ωt+1))

u′0(C0)
pt+1(ωt+1)

thus

φ0(ωt+1)

φ0(ωt)
= β

u′t+1(Ct+1(ωt+1))

u′t(Ct(ωt))

pt+1(ωt+1)

pt(ωt)
≡Mt+1(ωt+1)

As a last important remark notice that the single agent utility is a function of the Pareto optimal

weights {λj}j and that for each j λj = 1
γj
and γj is the Lagrange multiplier for (

∑
t

∑
ωt

(φ0(ωt)(ej,t((ωt))−

cj,t((ωt))))) so that by changing the (exogenous) endowment distribution {{ej,t((ωt))}ωt}t or, in

general, the aggregate endowment distribution {{
∑

j ej,t((ωt))}ωt}t the equilibrium point changes

and also potentially the agent that at the new equilibrium point holds the market. Because in

general endowments as well as the ex-dividend asset prices St are functions of a set of state vari-

ables {Z1
t , ..., Z

s
t } by changing the state variables both prices and endowments changes leading to

a potential change in the single agent who holds the market.
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7.3 The Ludvigson et al. 2016 �nancial uncertainty index F as disagree-

ment

In this subsection I show how the �nancial uncertainty index F , designed to capture �the condi-

tional volatility of a disturbance that is unforeseeable from the perspective of economic agents�,37

can be viewed as a proxy for disagreement. Since, unlike the classical disagreement proxies avail-

able in the literature, the monthly data for F dates back to the sixties, it is particularly convenient

for my study which uses an overall sample starting in February 1973.

The reason why we can think of F as a proxy for disagreement is due to the fact that its time-series

can be almost replicated by a nonlinear regression which is only a function of the classical dis-

agreement proxies available in the literature and the Rapach et al. (2016) short interest index SII

(also being a proxy for disagreement). In particular, on top of SII I use the standard deviation of

the I/B/E/S time-series of 1-year SP500 top.down earning-per-share analysts' forecasts (avail-

able from January 1992), EPSTD,the Yu (2011) bottom-up disagreement measure computed by

aggregating disagreements regarding the individual assets in the SP500 portfolio (available from

January 1982 to December 2011), EPSBU , and the Carlin et al. (2014) disagreement measure

calculated as the level of disagreement among Wall Street mortgage dealers about prepayment

speeds (available from January 1993 to December 2012), CLM .

The following graph shows the time-series of F and F̂t, the estimate of F from the model

Ft = β0 + f(EPSTD, EPSBU , CLM,SII) + ut

where f(·) is a full second order polynomial in its arguments.

37See Ludvigson et al. 2016
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The adjusted R2 of the regression is 0.8028 while the correlation between the two time-series is

0.9038.

7.4 The fundamental di�erence between F and ILLIQ

This subsection is basically an extension of the previous one: in order to show the di�erence

in nature of the two indexes despite a correlation of 0.3743, I repeat the analysis conducted on F

to ILLIQ. The model is

ILLIQt = β0 + f(EPSTD, EPSBU , CLM,SII) + ut

where f(·) is a full second order polynomial in its arguments. This time, very di�erently from the

case of F I �nd a regression adjusted R2 of approximately 2%. I conclude that ILLIQ, unlike F ,

cannot be replicated by disagreement proxies, thus containing fundamentally di�erent information.

7.5 The tight link between ILLIQ and the bid-ask spread on the market

Yet to be written. Basically we document the positive correlation between the nid-ask spread

on the market and the illiquidity index and that the market bid-ask spread Granger causes illiquity.
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7.6 Low Demand for the Market Portfolio

The last piece of evidence I gather in the static analysis of the RAEMs failures concerns the

investors' aggregate reaction: we already documented that the RAEMs rejections periods are

characterized by times of high market illiquidity, disagreement and irrationally downward biased

expectations. This section investigate how the market demand in these periods look like which is

ultimatly an empirical question: as a matter of fact we gathered confounding evidence with this

respect. On the one hand investors' optimism should trigger demand while on the other hand

uncertainty and illiquidity should depress it. In order to let the data speak we implement a model

speci�cation very similar to (9) and (10)

qt = δ1I
v
t + δ2(1− Ivt ) + ψt (13)

where qt is a proxy for the demand of the market portfolio. The next table illustrates the results

for this subsection

Table 1: Market portfolio demand

Coe�. V olt+1 SIIt+1 NetEquityPurcht+1

δ1 0.2944∗∗∗ 0.7927∗∗∗ 2977∗∗∗

δ2 -0.0869 -0.1419 5569

δ1 − δ2 0.3813∗∗∗ 0.9346∗∗∗ -2592∗∗

The table shows the result from the regression qt+1 = δ1I
v
t + δ2(1 − Ivt ) + ψt+1 over the main sample Jan :

1990 −Dec : 2014. qt+1 is a proxy for the demand for the market portfolio in t + 1 and Ivt is a non-negative step

function Iv ≡ 1[π̂t+1<LBt] isolating the periods in which the RAEMs are rejected at the 5% level. Three proxies for

qt+1, corresponding to the di�erent columns, are used: the de-trended log volume of SPDR SP500 ETF (measured

as the log of the number of shares sold), V ol, the Rapach et al. (2016) short interest index SII and the the net

purchase position (purchases-sales) in U.S. equity from foreign investors, NetEquityPurch. One star symbols the

statistic is signi�cantly di�erent from zero at the 10% level, two stars at the 5% and three stars at the 1%.
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Three proxies for the market portfolio demand are used: the de-trended38 log volume of SPDR

SP500 ETF (measured as the log of the number of shares sold), V ol, the Rapach et al. (2016)

short interest index SII and the the net purchase position (purchases-sales) in U.S. equity from

foreign investors, NetEquityPurch. δ1 is statistically di�erent from zero (positive) at the 1% level

in all the speci�cations. Furthermore, δ1 is statistically di�erent (grater) than δ2 when the demand

proxies are the (log) number of SP500 ETF s sold, V ol, and the aggregate equity volume shorted

SII while the opposite occur for the case in which the demand proxy is the net purchase of U.S.

equities from foreign investors. Overall these evidence document how investors' demand for the

market portfolio is lower during RAEMs rejections periods.

7.7 Forecasting the Unemployment and the Spread between BAA cor-

porate yields and the federal funds rate

In this subsection I show how I speci�ed, following the Box-Jenkins (1970) procedure, the fore-

casting models for the Unemployment rate, UR, and the spread between the BAA rated corporate

bonds and the federal funds rate, SP , yielding the time-series for the conditional expectations

Et[URt+1] and Et[SPt+1] respectively.

For both time-series I used the autocorrelation and partial autocorrelation functions and plotted

the �rst di�erences in order to generate a set of candidate parameters for the ARIMA class of

time-series model to be used, then I exploited the AIC and BIC criteria to select the optimal set of

parameters and �nally performed an Augmented Dickey-Fuller test to check for stationarity. The

time-series of conditional expectations, Et[yt+1] with y ∈ {UR, SP}, are computed as iterative

out-of-sample one-step ahead forecasts using the best speci�ed stationary ARMIA model. If the

model is correctly speci�ed, the innovations εt+1 = yt+1−Et[yt+1] should be independent over time

and have zero mean.39

The results are displayed in the graphs below

38The result still hold without the de-trending but time-series graphs (available upon request) show it might
wrongly pick up some time e�ects.

39Which is not guaranteed by construction since the forecast are out of sample.
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as shown in the upper autocorrelation plot for εUR, the best selected ARIMA model, calibrated

in the sample Jan : 1948 −Dec : 1989, features a �rst di�erence in UR to which an AR process

of order 3 has been applied and generates out-of-sample innovations with no systematic (linear)

dependence and a mean not statistically signi�cant from zero. The bottom graph reports the

analogous analysis for the case of SP ; results are similar to those of UR except that the best

selected model, calibrated in the sample July : 1954 − Dec : 1989, is an ARIMA(4,1,0), i.e. the

�rst di�erence of SP is modeled through an AR process of order 4.
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9 Tables

Table 2: Statistics on Main Variables

Variable Mean Std.Dev. Min Max N. Obs.

Rmkt
t+1 − 1 0.0093 0.0457 -0.2162 0.1705 494

Rt,f − 1 0.0042 0.0029 0.000 0.0138 494

LBt 0.0033 0.0032 0.000 0.0347 291

The table summarizes the main variables: Rmktt+1 −1 is the total linear return on the SP500, Rt,f −1 is the 1-month

yield to maturity on U.S. Treasuries and LBt is the market premium lower bound measure computed through (3).

Observations are at the monthly frequency (not annualized). The lower bound statistics are computed in the main

sample Jan : 1990 − Dec : 2014 while the market and the risk-free returns' ones are computed over the entire

sample Feb : 1973−Dec : 2014.
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Table 3: Statistics on the selected drivers D

Variable Mean Std.Dev. Min Max N. Obs.

F 0.9187 0.1755 0.6336 1.5464 494

SII 0.0114 0.9990 -2.1931 2.9358 494

TAXchg 0.1211 0.2999 -0.4984 0.9998 494

ILLIQ 0.0300 0.0647 -0.2010 0.4610 494

MDI -0.0271 0.1611 -0.6519 1.4715 494

BM 0.4948 0.2935 0.1205 1.2065 494

USDg 0.0022 0.0130 -0.0409 0.0663 494

The table summarizes the selected drivers D over the entire sample Feb : 1973 −Dec : 2014. F is the Ludvigson

et al. (2016) �nancial uncertainty measure: computed as the cross-sectional average conditional volatility of the

1-month Root Mean Squared Error in predictive regressions over approximately 150 monthly �nancial time series.

SII is the Rapach et al. (2016) short interest index: computed as the log of the equal-weighted mean of short

interest (as a percentage of share outstanding) across all publicly listed stocks on U.S. exchanges. TAXchg is the

annual time series of the rate of change on total taxes paid on capital gains as reported by the U.S. Department

of Treasury. ILLIQ is the negative of the Pastor-Stambaugh (2003) liquidity index: computed as the (negative of

the) aggregate daily response (average over a month) of signed volume to next day return for all individual stocks

on the New York Stock Exchange and the American Stock Exchange. MDI is the Pasquariello (2014) Market

Dislocation Index: computed as a monthly average of hundreds of individual abnormal absolute violations of three

textbook arbitrage parities in stocks, foreign exchange and money markets. BM is the book-to-market value ratio

for the Dow Jones Industrial Average. USDg is the U.S. Dollar appreciation index: computed as the linear return

on the Trade Weighted U.S. Dollar Index available from the Saint Louis Federal Reserve; the index is a weighted

(over the volume of bilateral transactions) average of the foreign exchange value of the U.S. dollar against the

currencies of a broad group of major U.S. trading partners.
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Table 4: Pearson correlation matrix for the drivers D

Variable F SII TAXchg ILLIQ MDI BM USDg

F 1

SII 0.0703 1

TAXchg -0.2139 -0.0594 1

ILLIQ 0.3743 0.1240 -0.0422 1

MDI 0.3187 -0.0200 -0.0549 0.1442 1

BM 0.0982 -0.2427 0.0141 0.1213 -0.0128 1

USDg 0.0005 -0.1036 0.0191 -0.0139 0.0772 0.1055 1

The table displays Pearson correlation coe�cients for the selected drivers D, described in the notes to Table 2, over

the entire sample Feb : 1973−Dec : 2014.

Table 5: Joint model-free test for the RAEMs: statistics on y|Iv and its components

Statistic y|Iv π|Iv Rmkt|Iv Rf |Iv LB|Iv

Cond.Mean -0.0165∗∗

Cond.Mean -0.010 0.006∗∗∗

Cond.Mean -0.004 0.006∗∗∗

The table summarizes the statistics of yt+1 ≡ πt+1−LBt and its components (πt+1 ≡ Rmktt+1 −Rt,f being the excess

market return and LBt the lower bound measure for the risk premium Et[πt+1] computed through (3)) conditional

on the nonnegative function Iv ≡ 1[π̂t+1<LBt] isolating the periods in which the RAEMs are rejected at the 5%

level (as shown in the �rst entry of the second column) over the main sample Jan : 1990 −Dec : 2014. One star

symbols the statistic is signi�cantly di�erent from zero at the 10% level, two stars at the 5% and three stars at the

1%.
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Table 6: Unconditional statistics on y and its components

Statistic y π Rmkt Rf LB

Mean 0.0028

Mean 0.0061∗∗ 0.0033∗∗∗

Mean 0.0086∗∗∗ 0.0025∗∗∗

The table summarizes the statistics of yt+1 ≡ πt+1−LBt and its components (πt+1 ≡ Rmktt+1 −Rt,f being the excess

market return and LBt the lower bound measure for the risk premium Et[πt+1] computed through (3)) over the

main sample Jan : 1990−Dec : 2014. One star symbols the statistic is signi�cantly di�erent from zero at the 10%

level, two stars at the 5% and three stars at the 1%.

48



Table 7: Explaining the RAEMs rejections

Variable β
Partial

R2
Adj. R2

Adj. R2

(F, SII, ILLIQ)

F 1.1557∗∗∗ 0.1224 0.5039 0.4537

SII 0.1295∗∗∗ 0.0931 0.5039 0.4537

ILLIQ 1.9897∗∗∗ 0.0829 0.5039 0.4537

BM 0.9655∗∗∗ 0.0298 0.5039

USDg 4.6158∗∗ 0.0158 0.5039

TAX 0.1910∗ 0.0121 0.5039

MDI -0.0921 0.0008 0.5039

The table reports the result (omitting the constant term) from the regression Ivt = β0 + Dtβ + ut ranked by

partial R2 on the β coe�cients over the main sample Jan : 1990−Dec : 2014. Ivt is a non-negative step function

Iv ≡ 1[π̂t+1<LBt] isolating the periods in which the RAEMs are rejected at the 5% level, while Dt is the matrix of

selected drivers (For a description of the drivers see notes to Table 2). The last column shows the adjusted R2 of

the regression when Dt only includes the �rst three most important drivers (i.e. F ,SII and ILLIQ). One star

symbols the statistic is signi�cantly di�erent from zero at the 10% level, two stars at the 5% and three stars at the

1%.
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Table 8: RAEMs' rejections in terms of the main drivers' characteristics

Coe�. F SII ILLIQ

α1 1.0646∗∗∗ 0.7926∗∗∗ 0.0765∗∗∗

Sig.atMed. YES YES YES

Sig.at75pc. NO NO YES

α2 0.8469∗∗∗ -0.1419 0.0045

α1 − α2 0.2177∗∗∗ 0.9345∗∗∗ 0.0720∗∗∗

The table shows the result from the regression dt = α1I
v
t + α2(1 − Ivt ) + wt over the main sample Jan : 1990 −

Dec : 2014. dt ∈ {Ft, SIIt, ILLIQt} is one among the main drivers while Ivt is a non-negative step function

Iv ≡ 1[π̂t+1<LBt] isolating the periods in which the RAEMs are rejected at the 5% level. Rows three and four

report whether or not the estimate for α1 is statistically grater than the unconditional median and 75-th percentile.

One star symbols the statistic is signi�cantly di�erent from zero at the 10% level, two stars at the 5% and three

stars at the 1%.
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Table 9: Irrational Expectations Tests

Coe�.
πt+1 −

EGat [πt+1]

πt+1 −

EAAt [πt+1]

πt+1 −

ESht [πt+1]

πt+1 −

EGHt [πt+1]

πt+1 −

EMt [πt+1]

Inflt+1−

Et[Inflt+1]

URt+1−

Et[URt+1]

SPt+1 −

Et[SPt+1]

γ1 0.8165∗∗ 0.2535 -0.0832l 0.1377l -0.2232l 0.3806 0.0488∗∗ 0.0910∗

γ2

-

0.4043∗∗∗
-0.1403 -0.0766l -0.1871l 0.0412l 0.1291l

-

0.0197∗∗∗
-0.0187

γ1 − γ2 1.2208∗∗∗ 0.3938∗∗ -0.0060l 0.3248l -0.1820l 0.2515 0.0685∗∗∗ 0.1097∗∗∗

The table shows the result from the regression zt+1 − Et[zt+1] = γ1I
v
t + γ2(1 − Ivt ) + ηt+1 over the main sample

Jan : 1990 − Dec : 2014. zt+1 is the random variable according to which investors form expectations Et[zt+1],

while Ivt is a non-negative step function Iv ≡ 1[π̂t+1<LBt] isolating the periods in which the RAEMs are rejected

at the 5% level. In the �rst �ve columns zt+1 represents the return of the market in excess of the risk-free rate

and expectations are collected from survey data (Gallup, American Association of Individual Investors, Shiller,

Graham and Harley, and Michigan) validated in Greenwood-Shleifer (2014). zt+1 in the sixth column represent

in�ation, Infl and the expectations are the market implied (and priced) ones from the di�erence in the yield of

5-year in�ation indexed treasury bounds and the yield of 5-year nominal treasury bonds. In the last two columns

zt+1 captures a key economic indicator, the U.S unemployment rate, UR, and a core �nancial indicator, the spread

between the BAA rated corporate bonds and the federal funds rate, SP ; expectations in this case are computed

as forecasts through the speci�cation of an econometric model following the Box-Jenkins (1970) procedure (See

Appendix for the details on the speci�cation procedure). One star symbols the statistic is signi�cantly di�erent

from zero at the 10% level, two stars at the 5% and three stars at the 1%, Xl indicates the statistic X has a p-value

grater than 0.3.
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Table 10: The role of dividends

Measure Mean Std. Min. Qtl. 0.25 Qtl. 0.5 Qtl. 0.75 Max.

LBl
M 0.3279 0.3181 0.0702 0.1527 0.2505 0.3943 3.4812

LBl 0.3293 0.3198 0.0706 0.1532 0.2512 0.3956 3.5023

LBcs
M 0.3296 0.3178 0.0687 0.1475 0.2536 0.3925 3.4501

LBcs 0.3311 0.3196 0.0691 0.1481 0.2552 0.3940 3.4710

The table shows the summary statistic of the empirical distribution in the main sample Jan : 1990 −Dec : 2014

of the lower bound measures computed through (3). LBmM , with m ∈ {l, cs}, corresponds to the case the dividend

yield DY is set to 1, which is the Martin (2016) formulation, m ∈ {l, cs} being the measure calculated via the linear

and the cubic-spline approximation. LBm, represents the measure which uses the SP500 dividends from Shiller.

Table 11: RAEMs' rejections driven by negative market returns

Statistic y|Iv π|Iv Rmkt|Iv R̄f L̄B

Cond.Mean -0.0133∗∗

Cond.Mean -0.010 0.003

Cond.Mean -0.004 0.003

The table summarizes the statistics in the main sample Jan : 1990 − Dec : 2014 concerning the joint model free

test for the RAEMs detailed in De�nition 2 and Table 5. Di�erently from the main test reported in Table 5, this

one �xes the risk-free rate and the lower bound measure to their unconditional mean, R̄f , and L̄B respectively.

One star symbols the statistic is signi�cantly di�erent from zero at the 10% level, two stars at the 5% and three

stars at the 1%.
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Table 12: Explaining the RAEMs' rejection probabilities

Variable β
Partial

R2
Adj. R2

Adj. R2

(F, SII, ILLIQ)

SII 0.0461∗∗∗ 0.2102 0.8302 0.6876

ILLIQ 0.5315∗∗∗ 0.1052 0.8302 0.6876

F 0.2055∗∗∗ 0.0689 0.8302 0.6876

USDg 1.9219∗∗∗ 0.0489 0.8302

MDI 0.1416∗∗∗ 0.0323 0.8302

BM 0.1694∗∗∗ 0.0163 0.8302

TAX 0.0233 0.0032 0.8302

The table reports the result (omitting the constant term) from the regression Pt(πt+1 < LBt) = β0 + Dtβ + ut

ranked by partial R2 on the β coe�cients over the main sample Jan : 1990 − Dec : 2014. Pt(πt+1 < LBt) is

the conditional probability to reject the RAEMs at time t introduced in section 2.2.2, while Dt is the matrix of

selected drivers (For a description of the drivers see notes to Table 2). The last column shows the adjusted R2 of

the regression when Dt only includes the �rst three most important drivers (i.e. F ,SII and ILLIQ). One star

symbols the statistic is signi�cantly di�erent from zero at the 10% level, two stars at the 5% and three stars at the

1%.
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10 Figures

Figure 1: Bid-ask spread surface with information ambiguity

The �gure plots the bid-ask spread surface from Aliyev and He (2016a) as a function of the aversion to am-

biguity/pessimism, α (with α = 0 representing a fully ambiguous-averse/pessimistic attitude) and the level of

ambiguity/uncertainty, δ. (with δ = 1 corresponding to fully ambiguous information) The horizontal plane is the

bid-ask spread in the classical rational benchmark of Glosten and Milgrom (1985).
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Figure 2: Horse-race for the best model for predicting πt+1

The blue solid line plots the actual excess return, πt+1, the OLS forecasts, πOLSt+1 , are displayed by a red dashed

line while the dot-dash green line shows the IMC forecasts, πIMC
t+1 : the top panel illustrates the in-sample forecasts

against the actual data in the training sample TS, while the bottom one the one-step ahead out-of sample estimates

in the main sample MS. The models are compared, both in and out of sample, in terms of their coe�cients and

R2 in the following regression

πt+1 = α+ βπMod
t+1 + ut+1 with Mod ∈ {OLS, IMC}

a good model should have α = 0, β = 1 and an high R2. The estimates of these parameters are reported in the

legends.

55



Figure 3: autocorrelation function of yt+1

The autocorrelation function of yt+1 ≡ πt+1 − LBt (πt+1 ≡ Rmktt+1 − Rt,f being the excess market return and LBt

the lower bound measure for the risk premium Et[πt+1] computed through (3)) together with the 95% con�dence

bands.
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Figure 4: joint RAEMs rejection periods

The �gure displays in solid blue the time series of yt+1 ≡ πt+1−LBt (πt+1 ≡ Rmktt+1 −Rt,f being the excess market

return and LBt the lower bound measure for the risk premium Et[πt+1] computed through (3)) while in dashed

red the time series highlighting the sub-sample in which the RAEMs are jointly rejected at the 5% level. The pink

shaded areas emphasize the NBER recessions.
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Figure 5: conditional probability to reject the RAEMs

The �gure displays the conditional probability to reject the RAEMs: the upper graph plots the time-series, solid

blue line, against the negative of the U.S. GDP growth, dashed line, and the pink areas represents the NBER

recession over the main sample Jan : 1990 − Dec : 2014. The lower graph illustrates the empirical distribution

against the lognormal benchmark and reports the minimum the 25-th, the 50-th, the 75-th quantiles and the

maximum.
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Figure 6: di�erent motivations behind RAEMs' failures over time

The �gure displays the contribution to the conditional probability to reject the RAEMs of the main drivers: in

the upper graph the joint contribution of the disagreement proxies F, SII is plotted in the form of a dashed

red line, the contribution of the illiquiity index ILLIQ, is represented by a dotted green line, while the overall

conditional probability of rejecting the RAEMs is still a solid blue line as in Figure 3. In the bottom graph the solid

light blue line tracks the di�erence between the disagreement and the illiquidity series; positive values indicate an

higher contribution of disagreement (asymmetric information) while negative values a predominant contribution of

illiquidity (market frictions).
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Figure 7: The lower bound measure: linear versus cubic-spline interpolation

The �gure displays the two di�erent interpolation scheme adopted in the study to compute the lower bound

measure according to equation (3). The upper graph plots the two time-series of lower bounds under the di�erent

interpolations, while the bottom one shows, in percentage, the absolute di�erence in terms of the cubic-spline

approximation.
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